

5.

Find the value of x such that $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$.

PERIODIC TEST - I (2025–26) QUESTION PAPER

Subject: Mather Marks: 25 Name: Aad	Grade: XII Time: 1 Hour Date: 09-06-2025			
General Instructions:				
This question paper	has five compulsory sections	: A, B, C, D, and E.		
 There is no overall c 	hoice in the paper.			
Section A comprises Section B comprises	4 Multiple Choice Questions	of 1 mark each.		
Section C comprises	3 Very Short Answer Type Q	uestions of 2 marks each.		
 Section D comprises 	2 Short Answer Type Question 1 Long Answer Type Question	ons of 3 marks each.		
* Section E has 1 Case	Study Question, in which 2 V	ery Short Answer Type Oues	tions are of 1 mark each and 1 Short ark question of the Case Study.	
		Section A		
Questions Nos.	1 to 4 carry 1 mark each.			
Given a skew-syl	mmetric matrix $A = \begin{bmatrix} 0 & a \\ -1 & b \\ -1 & c \end{bmatrix}$	the value of $(a + b + a)$	c) ² is	
(a) 0	(b) 2	(c) 3	(d) 4	
$ If \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & a & 1 \end{bmatrix} $ is n	on-singular matrix and $a \in \mathcal{A}$	A, then the set A is		
(a) R	(b) {0}	(c) {4}	(d) R - {4}	
If $ A = kA $, whe	ere A is a square matrix of o	rder 2, then the sum of the	possible values of k is	
(a) 1	(b) 2	(c) -1	(d) 0	
In an L.P.P., if the feasible region, th	objective function $Z = ax$ - en the number of points at	by has the same maximu which the maximum value	m value on two corner points of the	
(a) 1		(b) 2	,	
(c) infinite			(d) maximum value does not exist	
			ue does not exist	
Questions Nos. 5 t	o 7 carry 2 marks each.	Section B		
		t. n		
$2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}$	2 matrices, then solve the $3X + 2Y = \begin{bmatrix} -2 & 2 \\ 1 & -5 \end{bmatrix}$	following matrix equations	for X and Y.	

7. Evaluate:
$$\begin{vmatrix} a+pd & a+qd & a+rd \\ p & q & r \\ d & d & d \end{vmatrix}$$

Section C

Questions Nos. 8 and 9 carry 3 marks each.

8. If
$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A = \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$$
, then find A .

9. Maximise Z = 3x - 4ySubject to the constraints: $x - 2y \le 0$, $-3x + y \le 4$ $x - y \le 6$ $x, y \ge 0$

Section D

Question No. 10 carries 5 marks.

10. Find
$$A^{-1}$$
, where $A = \begin{bmatrix} 4 & 1 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & -2 \end{bmatrix}$. Hence, solve the following system of equations: $4x + 2y + 3z = 2$, $x + y + z = 1$, $3x + y - 2z = 5$.

Section E

Question No. 11 is a Case Based Question that has three sub parts. Subparts (i) and (ii) are compulsory and carry one mark each. Subpart (iii) carries 2 marks and has an internal choice.

11. Suppose a dealer in a rural area wishes to sell several sewing machines. He has only ₹5760 to invest and has space for, at most, 20 items for storage. An electronic sewing machine costs him ₹ 360, and a manually operated sewing machine costs ₹ 240. He can sell an electronic sewing machine at a profit of ₹ 22 and a manually operated sewing machine at a profit of ₹ 18.

Based on the above information, answer the following questions:

- (i) Write the constraints of the given problem.
- (ii) Find the corner points of its feasible region.
- (iii) If the objective function of the given problem is z=22x+18y, then find its maximum value.

OR

(iii) If the objective function of the given problem is z = 22x + 18y, then find its minimum value.