Half Yearly Exam: 2025-26 Subject: Chemistry(043)

Date: 11/08/25 Time: 3 Hours Max Marks:70

Name:

Class: 12 Division:

Roll No: Invigilator's Sign

General Instructions:

Read the following instructions carefully.

(a) There are 33 questions in this question paper with internal choice.

(b) SECTION A consists of 16 multiple-choice questions carrying 1 mark each.

(c) SECTION B consists of 5 short answer questions carrying 2 marks each.

(d) SECTION C consists of 7 short answer questions carrying 3 marks each.

(e) SECTION D consists of 2 case-based questions carrying 4 marks each.

(f) SECTION E consists of 3 long answer questions carrying 5 marks each.

(g) All questions are compulsory.

(h) Use of log tables and calculators is not allowed.

SECTION A

Directions (Q. No. 1-16): The following questions are multiple-choice questions with one correct answer. Each question carries 1 mark. There is no internal choice in this Section.

16

93 g of ethylene glycol is added to 1 kg of water to change the freezing point of the solution. If the freezing point of water is 273 K at 1 bar, and the Kf of water is 2 K kg/mol, which of the following graphs represents the depression in the freezing point of the water-ethylene glycol solution? (molar mass of ethylene glycol is

1

How much electricity in Faraday is required for the complete reduction of MnO₄⁻ ions 2 present in 500 ml of 0.5 M solution to Mn²⁺? d. 1.25 F c. 2.25 F

b. 2.5 F

a. 5F

	The major organic compound formed when 2-Bro	mobutane is heated	with alcoholic KOH is	1
3	, a Bromopropaile	C, Dai		
	a. Butan-2-oi	tment with Lucas rea	agent at room	1
	a. Butan-2-ol Compound 'A' of molecular formula C ₄ H ₁₀ O on trea	d'B' is heated with al	coholic KOH,	
4	temperature gives a comp	ctively		
	it gives isobutene. Compound 2-chloro-2-mehty	l-propane		
	a. 2-methyl-2-propanol and 2-chloro-2-methy b. 2-methyl-1-propanol and 3-chloro-2-methy	l-propane		
	2 mathyl-1-propanol and 2-chiloro Zinceny	т-ргорапе		
	d. Butan-2-ol and 2-chlorobutane			1
-	Which of the following statements is/are correct?			1
5	(i) A catalyst lowers the activation energy of a react (ii) A catalyst allows the same rate of reaction to be	tion. Jachieved at a lower t	emperature.	
	(ii) A catalyst allows the same rate of reaction to be (iii) A catalyst mixes with the reactants and increase		ration of	
	tante in the rate equation.			
	a ionly b. i and ii only c. ii and ii	i only a.	All- i, ii, and iii	
,	Ortho-nitrophenol is less soluble in water than p-	and m-nitrophenols be	ecause	1
6	o-nitrophenol shows intramolecular H-Dong	gille		
	b. o-nitrophenol shows intermolecular H-bond	ging than that of m- and p-i	nitrophenols	
	d. o-Nitrophenols are more volatile in steam the	han those of m- and p-	isomers.	
	G. 0 P			
	city is a shallds together the monome			1.
7	What type of linkage holds together the monome a Ether Bond b. Van der waal's Bond			1.
	a. Ether Bond b. Van der waars Boriu	rs of DNA and RNA? c. Phosphodiester li	nkage d.H-Bond	1.
7	a. Ether Bond b. Van der waars Bond Name the vitamin responsible for the coagulation	rs of DNA and RNA? c. Phosphodiester li		
8	a. Ether Bond b. Van der waars Bond Name the vitamin responsible for the coagulation a. Vitamin B12 b.Vitamin C	rs of DNA and RNA? c. Phosphodiester li	nkage d.H-Bond	
	a. Ether Bond b. Van der waal s Boliu Name the vitamin responsible for the coagulation a. Vitamin B12 b.Vitamin C Match the terms of Column I and Column II. Column I	rs of DNA and RNA? c. Phosphodiester lin of blood. c.Vitamin K	nkage d.H-Bond	1
8	a. Ether Bond b. Van der waal s Boliu Name the vitamin responsible for the coagulation a. Vitamin B12 b. Vitamin C Match the terms of Column I and Column II. Column I (i) Lead storage battery (b) Prevented by galv	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K	nkage d.H-Bond	1
8	a. Ether Bond b. Van der waal s Boliu Name the vitamin responsible for the coagulation a. Vitamin B12 b. Vitamin C Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Mercury cell (c) Gives steady pote	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial	nkage d.H-Bond	1
8	a. Ether Bond b. Van der waal s Boliu Name the vitamin responsible for the coagulation a. Vitamin B12 b. Vitamin C Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting (b) Prevented by galv (c) Gives steady pote (d) Pb is anode, PbO ₂	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial is cathode	nkage d.H-Bond d. Vitamin E	1
8	a. Ether Bond Name the vitamin responsible for the coagulation a. Vitamin B12 Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting b. Van der waal \$ BONU b. Vitamin C Column II. (a) Maximum efficien (b) Prevented by galv (c) Gives steady pote (d) Pb is anode, PbO₂ 2 (i) →(a):(iii) →(c):(iiii) →(b);(iv) →(d) b. (i)	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial is cathode →(b):(ii)→(c):(iii)→(d);(i	nkage d.H-Bond d. Vitamin E	1
8	a. Ether Bond Name the vitamin responsible for the coagulation a. Vitamin B12 Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting a.(i)→(a);(ii)→(c);(iii)→(b);(iv)→(d) c.ii→(d);(ii)→(c);(iii)→(a);(iv)→(b) b. Van der waal s Boliu b. Van der waal s Boliu b. Van der waal s Boliu (a) Maximum II. (a) Maximum efficien (b) Prevented by galv (c) Gives steady pote (d) Pb is anode, PbO₂ a.(i)→(a);(iii)→(c);(iiii)→(b);(iv)→(d) c.(i)→(d);(iii)→(c);(iiii)→(a);(iv)→(b)	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial is cathode	nkage d.H-Bond d. Vitamin E	1
8	a. Ether Bond Name the vitamin responsible for the coagulation a. Vitamin B12 Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting b. Van der waal \$ BONU b. Vitamin C Column II. (a) Maximum efficien (b) Prevented by galv (c) Gives steady pote (d) Pb is anode, PbO₂ 2 (i) →(a):(iii) →(c):(iiii) →(b);(iv) →(d) b. (i)	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial is cathode →(b):(ii)→(c):(iii)→(d);(i	nkage d.H-Bond d. Vitamin E	1
8	a. Ether Bond Name the vitamin responsible for the coagulation a. Vitamin B12 Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting a.(i)→(a);(ii)→(c);(iii)→(b);(iv)→(d) c.ii→(d);(ii)→(c);(iii)→(a);(iv)→(b) b. Van der waal s Boliu b. Van der waal s Boliu b. Van der waal s Boliu (a) Maximum II. (a) Maximum efficien (b) Prevented by galv (c) Gives steady pote (d) Pb is anode, PbO₂ a.(i)→(a);(iii)→(c);(iiii)→(b);(iv)→(d) c.(i)→(d);(iii)→(c);(iiii)→(a);(iv)→(b)	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial is cathode →(b):(ii)→(c):(iii)→(d);(i	nkage d.H-Bond d. Vitamin E	1
8	a. Ether Bond Name the vitamin responsible for the coagulation a. Vitamin B12 Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting a.(i)→(a):(iii)→(c):(iiii)→(b):(iv)→(d) c.(i)→(d):(iii)→(c):(iiii)→(a):(iv)→(b) 10 The slope of the following graph is	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial is cathode →(b):(ii)→(c):(iii)→(d);(i	nkage d.H-Bond d. Vitamin E	1
8	a. Ether Bond Name the vitamin responsible for the coagulation a. Vitamin B12 Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting a.(i)→(a):(iii)→(c):(iiii)→(b):(iv)→(d) c.(i)→(d):(iii)→(c):(iiii)→(a):(iv)→(b) 10 The slope of the following graph is	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial is cathode →(b):(ii)→(c):(iii)→(d);(i	nkage d.H-Bond d. Vitamin E	1
8	a. Ether Bond Name the vitamin responsible for the coagulation a. Vitamin B12 Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting a.(i)→(a);(ii)→(c);(iii)→(b);(iv)→(d) c.ii→(d);(ii)→(c);(iii)→(a);(iv)→(b) b. Van der waal s Boliu b. Van der waal s Boliu b. Van der waal s Boliu (a) Maximum II. (a) Maximum efficien (b) Prevented by galv (c) Gives steady pote (d) Pb is anode, PbO₂ a.(i)→(a);(iii)→(c);(iiii)→(b);(iv)→(d) c.(i)→(d);(iii)→(c);(iiii)→(a);(iv)→(b)	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial is cathode →(b):(ii)→(c):(iii)→(d);(i	nkage d.H-Bond d. Vitamin E	1
8	a. Ether Bond Name the vitamin responsible for the coagulation a. Vitamin B12 Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting a.(i)→(a):(iii)→(c):(iiii)→(b):(iv)→(d) c.(i)→(d):(iii)→(c):(iiii)→(a):(iv)→(b) 10 The slope of the following graph is	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial is cathode →(b):(ii)→(c):(iii)→(d);(i	nkage d.H-Bond d. Vitamin E	1
8	a. Ether Bond Name the vitamin responsible for the coagulation a. Vitamin B12 Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting a.(i)→(a);(ii)→(c);(iii)→(b);(iv)→(d) c.(i)→(d);(ii)→(c);(iii)→(a);(iv)→(b) The slope of the following graph is	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K ocy ranization ntial is cathode →(b);(ii)→(c);(iii)→(d);(ii →(c);(iii)→(d);(iii)→(b);(iv)	d. Vitamin E	1
8	a. Ether Bond Name the vitamin responsible for the coagulation a. Vitamin B12 Match the terms of Column I and Column II. Column I (i) Lead storage battery (ii) Mercury cell (iii) Fuel cell (iv) Rusting a.(i)→(a);(ii)→(c);(iii)→(b);(iv)→(d) c.(i)→(d);(ii)→(c);(iii)→(a);(iv)→(b) The slope of the following graph is	rs of DNA and RNA? c. Phosphodiester lin of blood. c. Vitamin K cy vanization ntial is cathode →(b):(ii)→(c):(iii)→(d);(i	d. Vitamin E	1

b.

d.

The electrochemical cell made up of Zn and Cu half-cells is called the Daniell cell. The 12 emf of a Daniell cell is 1.10V.

When an external voltage greater than 1.10 V is applied to this cell, which of the following changes will be observed in the cell?

- a. Zn electrode will act as an anode.
- b. Current will flow from Cu half cell to Zn half cell.
- c. Electrochemical cell continues to work fast.
- d The cell will act as an electrolytic cell.

Select the most appropriate answer from the options given below:

- a. Both A and R are true, and R is the correct explanation of A
- b. Both A and R are true, but R is not the correct explanation of A.
- c. A is true, but R is false.
- d. A is false, but R is true.
- Assertion: Hydrolysis of methyl ethanoate is a pseudo-first-order reaction. Reason: Water is present in large excess, and therefore its concentration remained constant throughout the reaction.
- 14 $^{\circ}$ Assertion: The disruption of a protein's native structure is called denaturation. Reason: The change in color and appearance of the egg during cooking is due to
- Assertion: The reversible work done by a Galvanic cell is equal to the decrease in its Gibbs denaturation. 1 15

Reason: Gibbs free energy change is given by $\Delta G = \Delta H - T\Delta U$

Assertion: SN₂ mechanism leads to the inversion of configuration. Reason: As in this mechanism, optical activity is lost. 2 16 3 SECTION B b. n-butyl chloride is treated with alc.KOH.(Write a reaction in support of it.) What happens when 17 What happens when Chloroform is exposed to air and sunlight? Write a reaction in b. Write the structure of DDT and its IUPAC name. 1 a. Aquatic species are more comfortable in cold waters than in warm waters. b. What happens when blood cells are placed in a solution containing more than 0.9% 1 18 (mass/volume) Sodium chloride? 19 When a certain conductivity cell was filled with 0.1 M KCl, it had a resistance of 85 ohms at 2 25° C. When the same cell was filled with an aqueous solution of 0.052 M unknown electrolyte, the resistance was 96 ohms. Calculate the molar conductivity of the electrolyte at this concentration. (Conductivity of 0.1 M KCl = $1.29 \times 10^{-2} \Omega^{-1} cm^{-1}$) a. Give simple chemical tests to distinguish between the following pairs of compounds: 2 20 (i) Ethanol and Phenol (ii) Propanol and 2-methylpropan-2-ol b. Illustrate the following reactions giving a chemical equation for each: (i) Kolbe's reaction (ii)Reimer-Tiemann reaction 2 a. How can propan-2-one be converted into tert-butyl alcohol? b.Name the starting material used in the industrial preparation of phenol and write chemical 21 reaction. SECTION C a. Write the structural formula of A, B, C and D in the following sequence of reaction : 22 $CH_3 - CH - CH_3 \xrightarrow[KOH]{alc} A \xrightarrow[Peroxide]{HBr} B \xrightarrow[dry\ ether]{Nal} C \xrightarrow[dry\ ether]{Mg} D$ b. How is chlorobenzene prepared by (a) direct chlorination (b) diazotization method? Write the Nernst equation for the cell in which the following reaction takes place $Mg(s) + 2Ag^{+}(0.0001M) \rightarrow Mg^{2+}(0.130M) + 2Ag(s)$ 23 Calculate its E_{Cell} if $E_{Mg2+/Mg}{}^o$ = -2.36 V and $E_{Ag1+/Ag}{}^o$ = 0.81 V (log 13=1.114) An organic compound 'A', having molecular formula $C_6\,H_6\,O$ gives a characteristic colour with a neutral ferric chloride solution. A' on treatment with CO_2 and NaOH at 400K under pressure gives B, which on acidification gives a compound C. The compound C reacts with acetyl chloride to give D, which is a popular painkiller. Deduce the structure of A, B, C, and D, and write the reactions involved.

1

2

2+1

3

1

2

Differentiate between order and molecularity of reaction.

The decomposition of N_2O_5 in CCl_4 solution follows the first-order rate law. The concentrations of N_2O_5 measured at different time intervals are given below:

Time in second(0	80	160	410	600	1130	1740
t)					3.4	2.4	1.6
[N2O5] mol/L	5.5	5.0	4.8	4	3.4		

Calculate its rate constant at $t=410\,\mathrm{s}$ and $t=1130\,\mathrm{s}$. What do these results show?

Mention the factors that affect the rate of a chemical reaction.

26

27

- State two main differences between globular and fibrous proteins.
- b. The two strands in DNA are not identical but complementary. Explain
- 0.6 mL of acetic acid, CH_3COOH , having a density of 1.06 g/mL, is dissolved in 1 litre of water. The depression in the freezing point observed for this strength of acid was 0.0205°C. Calculate the van't Hoff factor and the dissociation constant of an acid.
- b. The mole fraction of helium in a saturated solution at 20°C is 1.2 x 10⁻⁶. Find the pressure of helium above the solution. Given Henry's constant at 20°C is 144.97 kbar.
- Observe the table in which azeotropic mixtures are given along with their boiling points of pure Components and azeotropes, and answer the questions that follow.

	Some Azeotropic	The state of the s	Boilin	g Points	
В	Minimum Boiling Azeotropes		B	Mixture Azeotrope	
	95.37%	373K 373K 329.25K	351.3K 370.19K 319.25K	351.15 350.72 312.30	
C,H,OH	71.69%				
cs,	The second secon	۸	В	Mixture Azeotropes	
В		373K	188K	383K	
HCI	A STATE OF THE PARTY OF THE PAR	173K	359K	393.5K	
IINO,	68.07*	373K	383K	476K	
	C,H,OH C,H,OH CS, B	B Minimum Boiling Azeotropes C_H_OH	C ₂ H ₂ OH 95.37% 373K C ₃ H ₂ OH 71.69% 329.25K CS ₂ 67% 329.25K B Maximum Boiling Azcotropes A BC 20.3% 373K	B Minimum Boiling Azeotropes A B C ₂ H ₂ OH 95.37% 373K 351.3K C ₃ H ₂ OH 71.69% 373K 370.19K CS ₂ 67% 329.25K 319.25K B Maximum Boiling Azeotropes A B HCI 20.3% 373K 188K 1002 68.0% 373K 359K	

- a. What type of deviation is shown by minimum boiling azeotropes?
- b. Why do H₂O and HCl mixtures form maximum boiling azeotropes?
- c. Give one example of an ideal solution. What type of liquids form ideal solutions?

SECTION D

- Ethers are compounds with the general formula R-O-R'. A common method of preparing ethers is the Williamson Synthesis, where an alkoxide ion reacts with a primary alkyl 29 halide. Anisole (methoxybenzene) is an ether used in perfumes and organic synthesis. Due to the electron-donating methoxy group, anisole undergoes electrophilic substitution at ortho and para positions.
 - a. Explain why aryl halides cannot be used effectively in Williamson synthesis.
 - b. The boiling point of ethyl alcohol is much higher than that of dimethyl ether, though both have the same molecular weight. Why?

i) Friedel-Crafts reaction – alkylation of anisole. Lacychon ii)Bromination of anisole in ethanoic acid medium / Call Read the passage given below and answer the following questions: Molar conductivity for weak electrolytes can be obtained from the molar conductivities of 30 strong electrolytes at infinite dilution by algebraic addition. For example, the molar conductivity of a weak electrolyte like CH₃COOH can be obtained from the molar conductivities at infinite dilution of strong electrolytes like CH₃COONa, HCI, and NaCI according to Kohlrauch's law Λ° mCH3COOH= [Λ° mCH₃COO + Λ° mNa⁺] + [Λ° mH + + 1 $\Lambda^{\circ}mCl^{-}$]-[$\Lambda^{\circ}mNa^{+}+\Lambda^{\circ}mCl^{-}$] (i) What is the expression of Λ° m for an electrolyte AmBn? 1 (ii) Define limiting molar conductivity. 2 (iii) Calculate Λ° m for AgCl if Λ° m (AgNO₃) = 133.4, Λ° m(KCl)=149.9, Λ° m(KNO₃)=144.9 Scm²mol⁻¹ OR (iii) Calculate Λ° m for HAc if Λ° m (HCI) = 425.9, Λ° m(NaCI)=126.4, Λ° m(NaAc)=91.0 Scm²mol⁻¹

SECTION D

3+2

31 a. In a chemistry lab, Riya wants to find the difference between the theoretical molar mass and the observed molar mass of an unknown compound MN_2 . For this, she prepares a solution by adding 0.2 moles of the unknown compound MN_2 in 4 liters of water. She finds that the compound ionized to:

 $MN_2 \rightarrow M^{2+} + 2N^{-}$

If the molar mass of M is 48 and that of N is 64 and the observed osmotic pressure is 6 atm, then what is the value of the observed molar mass of the unknown compound?

- b. The vapor pressure of compound A at 90°C is 526 mm Hg and that of compound B is 11250 mm of Hg.
 - (i) What will be the total concentration (in terms of mole fraction) of the boiling mixture of A and B at 90° C if the two liquids are completely miscible with each other?
 - (ii) Using i, calculate X_A and X_B . (Round off to two decimal places) (Take P_{total} = 760 mm Hg)

OR

- a. Two solutions A and B are prepared. Both solutions A and B contain an equal amount of organic compounds P and Q, respectively as solutes in 500 g of benzene (as a solvent). The boiling point of solution A is 0.4 °C higher than that of pure benzene, and the boiling point of solution B is 0.8 °C higher than that of pure benzene.
 - (i) Calculate the ratio of the molecular weight of P: Q
 - (ii) If the molecular weight of P is 200, what is the minimum value of the sum of the molecular weights of P and Q?
- b. Write two differences between an ideal solution and a non-ideal solution.

rate constant for a reaction of zero order in A is 0.0030 mol L-1 s-1. How long will it 2+1 for the initial concentration of A to fall from 0.10 M to 0.075 M? +2 With the help of an example, explain what is meant by pseudo-first-order reaction. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is

a. A first order gas phase reaction: $A_0B_2(g) \rightarrow 2A(g) + 2B(g)$ at the temperature 400°C has the rate constant $k = 2.0 \times 10^{-4} \text{ sec}^{-1}$. What percentage of A_2B_2 is decomposed on heating for 900 seconds? (Antilog 0.0781 = 1.197)

(ii) reduced to half?

b. Define electrophoresis. $9 \times 0^{1/2}$ $2 \times 10^{1/6}$ c. For a reaction: $2NH_2(g) \rightarrow Pt N_2(g) + 3H_2(g)$ Rate = k

- (i) Write the order and molecularity of this reaction.
- (ii) Write the unit of k.

(i) doubled

33 Explain any five.

- a. Give a reason: During the electrophilic substitution reaction of haloarenes, the para-substituted derivative is the major product.
- b. Why is the product formed during the SN1 reaction is a racemic mixture?
- c.Convert the following: Chlorobenzene to Phenol
- d. Write the product formed when p-nitro chlorobenzene is heated with aqueous NaOH at 443 K, followed by acidification.
- e. You want to prepare CH₃ CH₂ CH₂ Br from CH₃ CH = CH₂. What are the reagents you require?
- f. Identify the product and the name of the reaction:

g.Write the IUPAC name of the following compound.

CH3CH=CHC(Br)(CH3)2