Preliminary Test-1 (2024-25)

Subject: Mathematics Date: 19/06/25

Time: 2 Hours Maximum Marks: 40 Name: Argune K Class: 12 Division Roll No:__ Invigilator's Sign:

General Instructions:

The Question paper contains five sections A, B, C, D and E. All section is compulsory. However, there are internal choices in some questions.

Section A: MCQ - 8 x 1 mark =8 and 1 AR Total 8+1=9 marks.

Section B:VSA - 4 x 2 marks =8 marks.

Section C: SA - 3 x 3 marks = 9 marks.

Section D: LA- 2 x 5=10 marks. Section E: CBQ- 1 x 4=4 marks.

Section-A

1 If A is square matrix, then A is symmetric, if a) $A^2 = A$ b) $A^T = A$ c) AT = - A d) $A^2 = 1$ 2 The number of all possible matrices of order3 × 3 with each entry 0 or1 is b) 27 d) 18 The adjoint of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is a) $\begin{bmatrix} 4 & -2 \\ -3 & -1 \end{bmatrix}$ b) $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 4 & -2 \\ 1 & -3 \end{bmatrix}$ 4 The equations, x + 4y - 2z = 3, 3x + y + 5z = 7, 2x + 3y + z = 5 have a) no solution b) two solution c) a unique solution d) infinitely many solutions If $\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$, then the value of x is a) $\pm 6\sqrt{5}$ If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, then A^2 is: 7 Find the matrix X for which $\begin{vmatrix} 1 & -4 \\ 3 & -2 \end{vmatrix}$ X = $\begin{vmatrix} -16 & -6 \\ 7 & 2 \end{vmatrix}$ a) $\begin{vmatrix} 6 & 2 \\ 11 & 2 \end{vmatrix}$ b) $\begin{vmatrix} 6 & 2 \\ 11/2 & 2 \end{vmatrix}$ c) $\begin{vmatrix} 6 & 2 \\ -11 & 2 \end{vmatrix}$ 1 8 If A and B are two matrices such that AB = B and BA = A, then A + B 2 is equal to

c) AB b) 2 BA ASSERTION-REASON BASED QUESTIONS

d) 2 AB

In the following questions, a statement of assertion(A) is followed by a statement of reason(R). Choose the correct answer out of the following choices.

Assertion (A): If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then the value of k such that $A^2 = kA - 2I$, is

a) A + B

Reason (R): If A and B are square matrices of same order, then (A + B)(A + B) is equal to A 2

- + AB + BA + B2.
- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.

Section-B

If A is a square matrix satisfying $A^T A = I$, write the value of |A|.

If $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 3 \\ 2 & 1 \end{bmatrix}$ find AB. Does BA exist?

If $\begin{vmatrix} x & 6 \\ -1 & 2w \end{vmatrix} + \begin{bmatrix} 4 & x+y \\ z+w & 3 \end{bmatrix} = 3 \begin{bmatrix} x & y \\ z & w \end{bmatrix}$, find the values of x, y, z, w.

Find the area of the triangle with vertices at the points given

(-2, -3), (3, 2) and (-1, -8).

OR

Find value of k if area of triangle is 4 sq. units and vertices are: (k,0), (4,0), (0,2).

Section-C

- If I is the identity matrix and A is a square matrix such that $A^2 = A$, then what is the value of(I + A) 2 - 3A?

3

3

5

If $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$, find $(AB)^{-1}$

OR

Find the values of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix}$ satisfy the equation A'A = I.

Find x, if $\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$

Section-D

- 5 If $A = \begin{bmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{bmatrix}$, find A $^{-1}$ and use it to solve the following system of equations: 5x - y + 4z = 5

 - 2x + 3y + 5z = 2
 - 5x 2y + 6z = -1
- Verify A (adj. A) = (adj. A) A = |A|I:
- $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$

Section-E

17 Read the following text carefully and answer the questions that follow:

Each triangular face of the Pyramid of Peace in Kazakhstan is made up of 25 smaller equilateral triangles as shown in the figure.

- 1. If the vertices of one of the smaller equilateral triangle are (0, 0), $(3,\sqrt{3})$ and $(3,-\sqrt{3})$, then find the area of such triangle. (1)
- 2. Find the area of a face of the Pyramid. (1)
- 3. Find the length of a altitude of a smaller equilateral triangle. (2)

OR

Let A(a, 0), B(0, b) and C(1, 1) be three points. If $\frac{1}{a} + \frac{1}{b} = 1$, then find the relation between three points.(2)

4